Researcher’s Profile

Xiaojuan (Jan) Chen, MD, PhD

Principal Investigator, Columbia Center for Translational Immunology
Director of Islet Cell Transplantation, Columbia Center for Translational Immunology
Principal Investigator, Naomi Berrie Diabetes Center

Dr. Chen’s research is focused on pancreatic islets, which contain insulin-secreting beta cells and glucagon-secreting alpha cells, both important for maintaining blood glucose homeostasis. The main research goal of the Chen lab is to explore areas

Lab Members: 
Sean Cambell, M.D., Ph.D., Postdoc
Wei Liu, M.D., Graduate student
Neranjan Shanthilal de Silva, Undergraduate student
Collaborators: 
<p> Dr. Megan Sykes</p> <p> Dr. Dieter Egli&nbsp;</p>
Publications: 
Woodland D, Wei Liu, Liang J, Sears M, Chen X. Short-term high fat feeding induces islet macrophage infiltration and -cell replication independent of cellular oxidative stress. AJP-Endocrinology & Metabolism 2016 (in revision) Liao S, Liu
About: 

Dr. Xiaojuan Chen is a principal investigator at the CCTI and serves as Director of Islet Cell Transplantation of CCTI and the Director of Columbia Islet Processing Core at the Columbia University College of Physicians and Surgeons. Dr. Chen received her M.D. degree from Jinan University Medical College, China, M.S. degree in Biology from Marquette University, and Ph.D degree in Molecular and Cellular Physiology from University of Cincinnati, followed by a postdoctoral training at the John’s Hopkins University. She joined Columbia University in 2012 after spending 15 years at Northwestern University School of Medicine, where she conducted translational research in islet cell transplantation. Having become an expert in the exacting methodology and compliance procedures required for FDA-approved clinical cellular therapies, Dr. Chen performed islet isolation from more than 180 pancreata for research and clinical islet transplantation to patients with type 1 diabetes.

At Columbia, her laboratory is conducting research on human islet cell biology and immunogeneicity characterization, and utilizes islet transplantation models to explore areas of islet cellular and molecular biology that are pertinent to the development of diabetes as well as to the improvement of islet transplantation for the treatment of type 1 diabetes. In addition, Dr. Chen will direct a nonhuman primate research program in tolerance induction to islet allografts. Using both animal models and human islets, she will play a key role in translating tolerance therapies from animal models to the clinic. For more information on current research, please see research description and publications.